

V Semester B.C.A. Degree Examination, Nov./Dec. 2017 (CBCS) (F + R) (2016-17 and Onwards) BCA 503: COMPUTER ARCHITECTURE

Time: 3 Hours Max. Marks: 100

Instruction: Answer all Sections.

SECTION - A

I. Answer any ten questions. Each carries two marks.

(10×2=20)

- 1) Write the symbol, logical expression and truth table of NAND gate.
- 2) Give the classification of integrated circuits.
- 3) Distinguish between RAM and ROM.
- 4) Define Multiplexer and Demultiplexer.
- 5) What are the types of binary codes?
- 6) Subtract 24₍₁₀₎ from 13₍₁₀₎ using 2's complement method.
- 7) Define opcode and operand.
- 8) What is BUN instruction?
- 9) What are the two types of computer architecture based on registers?
- 10) What are the different types of interrupts?
- 11) Define access time and transfer rate.
- 12) Define Baud rate.

SECTION - B

II. Answer any five questions. Each question carries five marks.

 $(5 \times 5 = 25)$

- 13) Explain the steps involved in the design of the sequential circuits.
- 14) Explain synchronous binary counter with logic diagram.
- 15) Discuss on error detection and correction codes briefly.
- 16) Explain any five register reference instructions.
- 17) With a block diagram, explain how BSA instruction executes.
- 18) Explain the addressing modes.
- 19) Explain DMA controller with a block diagram.
- 20) Write a note on virtual memory.

(RESWING BY SECTION - C | P (2080)

Ш	. An	ISW	er any three questions. Each question carries fifteen marks. (3×15=4	45)
	21)	a)	Simplify F(ABCD) = Σ m (1, 3, 7, 11, 15) + Σ d (0, 2, 5) using K-map.	7
		b)	What is a half adder? Design a half adder using only NAND gates.	8
	22)	a)	Explain decoder expansion with neat diagram.	7
		b)	Discuss the parity generator and parity checker.	8
	23)	a)	Explain common bus organization of basic computer with neat diagram.	8
		b)	Distinguish between FGI and FGO.	7
	24)	a)	What is a sub-routine? Explain CALL and RETURN instructions.	8
		b)	Explain the arithmetic logic shift with a neat diagram.	7
	25)	a)	Explain I/O interface unit with a neat diagram.	8
		b)	Write a note on isolated vs memory mapped I/O.	7
			SECTION - D. briango bria aboogo arrigot pa	
IV. Answer any one question. Question carries ten marks. (1×1			10)	
	26)	a)	Explain 4-bit shift register.	5
		b)	Explain the working of J-K flip-flop.	5
	27)	a)	Explain interrupt cycle with suitable example.	6
		b)	List the applications of EEPROM.	4

Explain synchronous binary counter with logic diagram.